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QUANTILE REGRESSION FOR LARGE-SCALE APPLICATIONS∗

JIYAN YANG† , XIANGRUI MENG‡ , AND MICHAEL W. MAHONEY§

Abstract. Quantile regression is a method to estimate the quantiles of the conditional distribu-
tion of a response variable, and as such it permits a much more accurate portrayal of the relationship
between the response variable and observed covariates than methods such as least-squares or least
absolute deviations regression. It can be expressed as a linear program, and, with appropriate pre-
processing, interior-point methods can be used to find a solution for moderately large problems.
Dealing with very large problems, e.g., involving data up to and beyond the terabyte regime, re-
mains a challenge. Here, we present a randomized algorithm that runs in nearly linear time in the
size of the input and that, with constant probability, computes a (1 + ε) approximate solution to
an arbitrary quantile regression problem. As a key step, our algorithm computes a low-distortion
subspace-preserving embedding with respect to the loss function of quantile regression. Our empiri-
cal evaluation illustrates that our algorithm is competitive with the best previous work on small to
medium-sized problems, and that in addition it can be implemented in MapReduce-like environments
and applied to terabyte-sized problems.
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1. Introduction. Quantile regression is a method to estimate the quantiles of
the conditional distribution of a response variable, expressed as functions of observed
covariates [8], in a manner analogous to the way in which least-squares regression
estimates the conditional mean. The least absolute deviations regression (i.e., �1 re-
gression) is a special case of quantile regression that involves computing the me-
dian of the conditional distribution. In contrast with �1 regression and the more
popular �2 or least-squares regression, quantile regression involves minimizing asym-
metrically weighted absolute residuals. Doing so, however, permits a much more
accurate portrayal of the relationship between the response variable and observed
covariates, and it is more appropriate in certain non-Gaussian settings. For these
reasons, quantile regression has found applications in many areas, e.g., survival anal-
ysis and economics [2, 10, 3]. As with �1 regression, the quantile regression problem
can be formulated as a linear programming problem, and thus simplex or interior-
point methods can be applied [9, 15, 14]. Most of these methods are efficient only
for problems of small to moderate size, and thus to solve very-large-scale quan-
tile regression problems more reliably and efficiently, we need new computational
techniques.

In this paper, we provide a fast algorithm to compute a (1 + ε) relative-error
approximate solution to the overconstrained quantile regression problem. Our al-
gorithm constructs a low-distortion subspace embedding of the form that has been
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used in recent developments in randomized algorithms for matrices and large-scale
data problems, and our algorithm runs in time that is nearly linear in the number of
nonzeros in the input data.

In more detail, recall that a quantile regression problem can be specified by a
(design) matrix A ∈ R

n×d, a (response) vector b ∈ R
n, and a parameter τ ∈ (0, 1),

in which case the quantile regression problem can be solved via the optimization
problem

minimizex∈Rd ρτ (b −Ax),(1.1)

where ρτ (y) =
∑d

i=1 ρτ (yi), for y ∈ R
d, where

ρτ (z) =

{
τz, z ≥ 0;

(τ − 1)z, z < 0,
(1.2)

for z ∈ R, is the corresponding loss function. In the remainder of this paper, we will
use A to denote the augmented matrix

[
b −A

]
, and we will considerA ∈ R

n×d. With
this notation, the quantile regression problem of (1.1) can equivalently be expressed
as a constrained optimization problem with a single linear constraint,

minimizex∈C ρτ (Ax),(1.3)

where C = {x ∈ R
d | cTx = 1} and c is a unit vector with the first coordinate set to

be 1. The reasons we want to switch from (1.1) to (1.3) are as follows. First, it is for
notational simplicity in the presentation of our theorems and algorithms. Second, all
the results about low-distortion or (1± ε)-subspace embedding in this paper hold for
any x ∈ R

d,

(1/κ1)‖Ax‖1 ≤ ‖ΠAx‖1 ≤ κ2‖Ax‖1.
In particular, we can consider x in some specific subspace of Rd. For example, in our
case, x ∈ C. Then, the equation above is equivalent to the following:

(1/κ1)‖b−Ax‖1 ≤ ‖Πb−ΠAx‖1 ≤ κ2‖b−Ax‖1.
Therefore, using notation Ax with x in some constraint is a more general form of
expression. We will focus on very overconstrained problems with size n � d.

Our main algorithm depends on a technical result, presented as Lemma 3.1,
which is of independent interest. Let A ∈ R

n×d be an input matrix, and let S ∈
R

s×n be a random sampling matrix constructed based on the importance sampling
probabilities

pi = min{1, s · ‖U(i)‖1/‖U‖1},
where ‖ · ‖1 is the elementwise �1 norm and where U(i) is the ith row of an �1 well-
conditioned basis U for the range of A (see Definition 2.4 and Proposition 3.3). Then,
Lemma 3.1 states that for a sampling complexity s that depends on d but is indepen-
dent of n,

(1− ε)ρτ (Ax) ≤ ρτ (SAx) ≤ (1 + ε)ρτ (Ax)

will be satisfied for every x ∈ R
d.
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Although one could use, e.g., the algorithm of [6] to compute such a well-
conditioned basis U and then “read off” the �1 norm of the rows of U , doing so
would be much slower than the time allotted by our main algorithm. As Lemma 3.1
enables us to leverage the fast quantile regression theory and the algorithms de-
veloped for �1 regression, we provide two sets of additional results, most of which
are built from the previous work. First, we describe three algorithms (Algorithm 1,
Algorithm 2, and Algorithm 3) for computing an implicit representation of a well-
conditioned basis; second, we describe an algorithm (Algorithm 4) for approximating
the �1 norm of the rows of the well-conditioned basis from that implicit represen-
tation. For each of these algorithms, we prove quality-of-approximation bounds in
quantile regression problems, and we show that they run in nearly “input-sparsity”
time, i.e., in O(nnz(A) · log n) time, where nnz(A) is the number of nonzero elements
of A, plus lower-order terms. These lower-order terms depend on the time to solve
the subproblem we construct, and they depend on the smaller dimension d but not on
the larger dimension n. Although of less interest in theory, these lower-order terms
can be important in practice, as our empirical evaluation will demonstrate.

We should note that of the three algorithms for computing a well-conditioned
basis, the first two appear in [13] and are stated here for completeness; the third
algorithm, which is new to this paper, is not uniformly better than either of the two
previous algorithms with respect to either condition number or running time. (In par-
ticular, Algorithm 1 has slightly better running time, and Algorithm 2 has slightly bet-
ter conditioning properties.) Our new conditioning algorithm is, however, only slightly
worse than the better of the two previous algorithms with respect to each of those two
measures. Because of the trade-offs involved in implementing quantile regression al-
gorithms in practical settings, our empirical results show that by using a conditioning
algorithm that is only slightly worse than the best previous conditioning algorithms
for each of these two criteria, our new conditioning algorithm can lead to better re-
sults than either of the previous algorithms that was superior by only one of those
criteria.

Given these results, our main algorithm for quantile regression is presented as
Algorithm 5. Our main theorem for this algorithm, Theorem 3.4, states that with
constant probability, this algorithm returns a (1 + ε)-approximate solution to the
quantile regression problem and that this solution can be obtained in O(nnz(A)·log n)
time, plus the time for solving the subproblem (whose size is O(μd3 log(μ/ε)/ε2)× d,
where μ = τ

1−τ , independent of n, when τ ∈ [1/2, 1)).
We also provide a detailed empirical evaluation of our main algorithm for quantile

regression, including characterizing the quality of the solution as well as the running
time, as a function of the high dimension n, the lower dimension d, the sampling
complexity s, and the quantile parameter τ . Among other things, our empirical eval-
uation demonstrates that the output of our algorithm is highly accurate in terms of
not only objective function value but also the actual solution quality (by the latter,
we mean a norm of the difference between the exact solution to the full problem and
the solution to the subproblem constructed by our algorithm), when compared with
the exact quantile regression, as measured in three different norms. More specifi-
cally, our algorithm yields two-digit accuracy solution by sampling only, e.g., about
0.001% of a problem with size 2.5e9× 50.1 Our new conditioning algorithm outper-
forms other conditioning-based methods, and it permits much larger small dimension
d than previous conditioning algorithms. In addition to evaluating our algorithm on

1We use this notation throughout; e.g., by 2.5e9× 50, we mean that n = 2.5× 109 and d = 50.
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moderately large data that can fit in RAM, we also show that our algorithm can be
implemented in MapReduce-like environments and applied to computing the solution
of terabyte-sized quantile regression problems.

The best previous algorithm for moderately large quantile regression problems is
due to [15] and [14]. Their algorithm uses an interior-point method on a smaller prob-
lem that has been preprocessed by randomly sampling a subset of the data. Their
preprocessing step involves predicting the sign of each A(i)x

∗ − bi, where A(i) and
bi are the ith row of the input matrix and the ith element of the response vector,
respectively, and x∗ is an optimal solution to the original problem. When compared
with our approach, they compute an optimal solution, while we compute an approxi-
mate solution, but in worst-case analysis it can be shown that with high probability
our algorithm is guaranteed to work, while their algorithm does not come with such
guarantees. Also, the sampling complexity of their algorithm depends on the higher
dimension n, while the number of samples required by our algorithm depends only
on the lower dimension d, but our sampling is with respect to a carefully constructed
nonuniform distribution, while they sample uniformly at random.

For a detailed overview of recent work on using randomized algorithms to com-
pute approximate solutions for least-squares regression and related problems, see the
recent review [12]. Most relevant for our work is the algorithm of [6] that constructs
a well-conditioned basis by ellipsoid rounding and a subspace-preserving sampling
matrix in order to approximate the solution of general �p regression problems, for
p ∈ [1,∞), in roughly O(nd5 logn); the algorithms of [16] and [5] that use the “slow”
and “fast” versions of the Cauchy transform to obtain a low-distortion �1 embed-
ding matrix and solve the overconstrained �1 regression problem in O(nd1.376+) and
O(nd log n) time, respectively; and the algorithm of [13] that constructs low-distortion
embeddings in input-sparsity time and uses those embeddings to construct a well-
conditioned basis and approximate the solution of the overconstrained �1 regression
problem in O(nnz(A) · log n+poly(d) log(1/ε)/ε2) time. In particular, we will use the
two conditioning methods in [13], as well as our “improvement” of those two methods,
for constructing �1 norm well-conditioned basis matrices in nearly input-sparsity time.
In this work, we also demonstrate that such a well-conditioned basis in the �1 sense
can be used to solve the overconstrained quantile regression problem.

2. Background and overview of conditioning methods.

2.1. Preliminaries. We use ‖ · ‖1 to denote the elementwise �1 norm for both
vectors and matrices, and we use [n] to denote the set {1, 2, . . . , n}. For any matrix
A, A(i), and A(j) denote the ith row and the jth column of A, respectively; A denotes
the column space of A. For simplicity, we assume A has full column rank, and we
always assume that τ ≥ 1

2 . All the results hold for τ < 1
2 by simply switching the

positions of τ and 1− τ .

Although ρτ (·), defined in (1.2), is not a norm, since the loss function does not
have the positive linearity, it satisfies some “good” properties, as stated in the follow-
ing lemma.

Lemma 2.1. Suppose that τ ≥ 1
2 . Then, for any x, y ∈ R

d, a ≥ 0, the following
hold:

1. ρτ (x+ y) ≤ ρτ (x) + ρτ (y);
2. (1 − τ)‖x‖1 ≤ ρτ (x) ≤ τ‖x‖1;
3. ρτ (ax) = aρτ (x); and
4. |ρτ (x)− ρτ (y)| ≤ τ‖x− y‖1.
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Proof. It is trivial to prove every equality or inequality for x, y in one dimension.
Then by the definition of ρτ (·) for vectors, the inequalities and equalities hold for
general x and y.

To make our subsequent presentation self-contained, here we will provide a brief
review of recent work on subspace embedding algorithms. We start with the definition
of a low-distortion embedding matrix for A in terms of ‖ · ‖1; see, e.g., [13].

Definition 2.2 (low-distortion �1 subspace embedding). Given A ∈ R
n×d, Π ∈

R
r×n is a low-distortion embedding of A if r = poly(d) and for all x ∈ R

d,

(1/κ1)‖Ax‖1 ≤ ‖ΠAx‖1 ≤ κ2‖Ax‖1.

where κ1 and κ2 are low-degree polynomials of d.

The following stronger notion of a (1 ± ε)-distortion subspace-preserving embed-
ding will be crucial for our method. In this paper, the “measure functions” we will
consider are ‖ · ‖1 and ρτ (·).

Definition 2.3 ((1± ε)-distortion subspace-preserving embedding). Given A ∈
R

n×d and a measure function of vectors f(·), S ∈ R
s×n is a (1±ε)-distortion subspace-

preserving matrix of (A, f(·)) if s = poly(d) and for all x ∈ R
d,

(1 − ε)f(Ax) ≤ f(SAx) ≤ (1 + ε)f(Ax).

Furthermore, if S is a sampling matrix (one nonzero element per row in S), we call
it a (1± ε)-distortion subspace-preserving sampling matrix.

In addition, the following notion, originally introduced by [4] and stated more
precisely in [6], of a basis that is well-conditioned for the �1 norm will also be crucial
for our method.

Definition 2.4 ((α, β)-conditioning and well-conditioned basis). Given A ∈
R

n×d, A is (α, β)-conditioned if ‖A‖1 ≤ α and for all x ∈ R
q, ‖x‖∞ ≤ β‖Ax‖1.

Define κ(A) as the minimum value of αβ such that A is (α, β)-conditioned. We will
say that a basis U of A is a well-conditioned basis if κ = κ(U) is a polynomial in d,
independent of n.

For a low-distortion embedding matrix for (A, ‖ · ‖1), we next state a fast con-
struction algorithm that runs in input-sparsity time by applying the sparse Cauchy
transform. This was originally proposed as Theorem 2 in [13].

Lemma 2.5 (fast construction of low-distortion �1 subspace embedding matrix
from [13]). Given A ∈ R

n×d with full column rank, let Π1 = SC ∈ R
r1×n, where

S ∈ R
r1×n has each column chosen independently and uniformly from the r1 standard

basis vector of Rr1 , and where C ∈ R
n×n is a diagonal matrix with diagonals chosen

independently from Cauchy distribution. Set r1 = ωd5 log5 d with ω sufficiently large.
Then, with a constant probability, we have

(2.1) 1/O(d2 log2 d) · ‖Ax‖1 ≤ ‖Π1Ax‖1 ≤ O(d log d) · ‖Ax‖1 ∀x ∈ R
d .

In addition, Π1A can be computed in O(nnz(A)) time.

Remark. This result has very recently been improved. In [17], the authors show
that one can achieve a O(d2 log2 d) distortion �1 subspace embedding matrix with
embedding dimension O(d log d) in nnz(A) time by replacing Cauchy variables in the
above lemma with exponential variables. Our theory can also be easily improved by
using this improved lemma.
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Next, we state a result for the fast construction of a (1± ε)-distortion subspace-
preserving sampling matrix for (A, ‖ · ‖1), from Theorem 5.4 in [5], with p = 1, as
follows.

Lemma 2.6 (fast construction of �1 sampling matrix from Theorem 5.4 in [5]).
Given a matrix A ∈ R

n×d and a matrix R ∈ R
d×d such that AR−1 is a well-

conditioned basis for A with condition number κ, it takes O(nnz(A) · logn) time to
compute a sampling matrix S ∈ R

s×n with s = O(κd log(1/ε)/ε2) such that with a
constant probability, for any x ∈ R

d,

(1− ε)‖Ax‖1 ≤ ‖SAx‖1 ≤ (1 + ε)‖Ax‖1.
We also cite the following lemma for finding a matrix R such that AR−1 is a well-
conditioned basis, which is based on ellipsoidal rounding proposed in [5].

Lemma 2.7 (fast ellipsoid rounding from [5]). Given an n × d matrix A, by
applying an ellipsoid rounding method, it takes at most O(nd3 logn) time to find a
matrix R ∈ R

d×d such that κ(AR−1) ≤ 2d2.
Finally, two important ingredients for proving subspace preservation are γ-nets

and tail inequalities. Suppose that Z is a point set and ‖·‖ is a metric on Z. A subset
Zγ is called a γ-net for some γ > 0 if for every x ∈ Z there is a y ∈ Zγ such that
‖x − y‖ ≤ γ. It is well known that the unit ball of a d-dimensional subspace has a
γ-net with size at most (3/γ)d [1]. Also, we will use the standard Bernstein inequality
to prove concentration results for the sum of independent random variables.

Lemma 2.8 (Bernstein inequality [1]). Let X1, . . . , Xn be independent random
variables with zero-mean. Suppose that |Xi| ≤ M for i ∈ [n]; then for any positive
number t, we have

Pr

⎡
⎣∑
i∈[n]

Xi > t

⎤
⎦ ≤ exp

(
− t2/2∑

i∈[n]EX2
j +Mt/3

)
.

2.2. Conditioning methods for �1 regression problems. Before presenting
our main results, we start here by outlining the theory for conditioning for overcon-
strained �1 (and �p) regression problems.

The concept of a well-conditioned basis U (recall Definition 2.4) plays an impor-
tant role in our algorithms, and thus in this subsection we will discuss several related
conditioning methods. By a conditioning method, we mean an algorithm for finding,
for an input matrix A, a well-conditioned basis, i.e., either finding a well-conditioned
matrix U or finding a matrix R such that U = AR−1 is well-conditioned. Many ap-
proaches have been proposed for conditioning. The two most important properties of
these methods for our subsequent analysis are (1) the condition number κ = αβ and
(2) the running time to construct U (or R). The importance of the running time
should be obvious, but the condition number directly determines the number of rows
that we need to select, and thus it has an indirect effect on running time (via the time
required to solve the subproblem). See Table 1 for a summary of the basic properties
of the conditioning methods that will be discussed in this subsection.

In general, there are three basic ways for finding a matrix R such that U = AR−1

is well-conditioned: those based on the QR factorization, those based on ellipsoid
rounding, and those based on combining the two basic methods:

• Via QR factorization (QR). To obtain a well-conditioned basis, one can first
construct a low-distortion �1 embedding matrix. By Definition 2.2, this means
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Table 1

Summary of running time, condition number, and type of conditioning methods proposed re-
cently. QR and ER refer, respectively, to methods based on the QR factorization and methods
based on ellipsoid rounding, as discussed in the text. QR small and ER small denote the running
time for applying QR factorization and ellipsoid rounding, respectively, on a small matrix with size
independent of n.

Name Running time κ Type

SC [16] O(nd2 log d) O(d5/2 log3/2 n) QR

FC [5] O(nd log d) O(d7/2 log5/2 n) QR

Ellipsoid rounding [4] O(nd5 logn) d3/2(d+ 1)1/2 ER
Fast ellipsoid rounding [5] O(nd3 logn) 2d2 ER

SPC1 [13] O(nnz(A)) O(d
13
2 log

11
2 d) QR

SPC2 [13] O(nnz(A) · logn) + ER small 6d2 QR+ER

SPC3 (proposed in this article) O(nnz(A) · logn) + QR small O(d
19
4 log

11
4 d) QR+QR

finding a Π ∈ R
r×d such that for any x ∈ R

d,

(2.2) (1/κ1)‖Ax‖1 ≤ ‖ΠAx‖1 ≤ κ2‖Ax‖1,

where r 	 n and is independent of n and the factors κ1 and κ2 here will be
low-degree polynomials of d (and related to α and β of Definition 2.4). For
example, Π could be the sparse Cauchy transform described in Lemma 2.5.
After obtaining Π, by calculating a matrix R such that ΠAR−1 has orthonor-
mal columns, the matrix AR−1 is a well-conditioned basis with κ ≤ d

√
rκ1κ2.

See Theorem 4.1 in [13] for more details. Here, the matrix R can be obtained
by a QR factorization (or, alternately, the singular value decomposition). As
the choice of Π varies, the condition number of AR−1, i.e., κ(AR−1), and the
corresponding running time will also vary, and there is in general a trade-off
among these.
For simplicity, the acronyms for these types of conditioning methods will
come from the name of the corresponding transformations: SC stands for
slow Cauchy transform from [16]; FC stands for fast Cauchy transform from
[5]; and SPC1 (see Algorithm 1) will be the first method based on the sparse
Cauchy transform (see Lemma 2.5). We will call the methods derived from
this scheme QR-type methods.

• Via ellipsoid rounding (ER). Alternatively, one can compute a well-conditioned
basis by applying ellipsoid rounding. This is a deterministic algorithm that
computes an η-rounding of a centrally symmetric convex set C = {x ∈
R

d |‖Ax‖1 ≤ 1}. By η-rounding here we mean finding an ellipsoid E = {x ∈
R

d |‖Rx‖2 ≤ 1}, satisfying E /η ⊆ C ⊆ E , which implies ‖Rx‖2 ≤ ‖Ax‖1 ≤
η‖Rx‖2 for all x ∈ R

d. With a transformation of the coordinates, it is not
hard to show the following:

‖x‖2 ≤ ‖AR−1x‖1 ≤ η‖x‖2.(2.3)

From this, it is not hard to show the following inequalities:

‖AR−1‖1 ≤
∑
j∈[d]

‖AR−1ej‖1 ≤
∑
j∈[d]

η‖ej‖2 ≤ dη,

‖AR−1x‖1 ≥ ‖x‖2 ≥ ‖x‖∞.
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This directly leads to a well-conditioned matrix U = AR−1 with κ ≤ dη.
Hence, the problem boils down to finding an η-rounding with η small in a
reasonable time.
By Theorem 2.4.1 in [11], one can find a (d(d+1))1/2-rounding in polynomial
time. This result was used by [4] and [6]. As we mentioned in the previous
section in Lemma 2.7, in [5] a new fast ellipsoid rounding algorithm was
proposed. For an n×d matrix A with full rank, it takes at most O(nd3 logn)
time to find a matrix R such that AR−1 is a well-conditioned basis with
κ ≤ 2d2. We will call the methods derived from this scheme ER-type methods.

• Via combined QR+ERmethods. Finally, one can construct a well-conditioned
basis by combining QR-like and ER-like methods. For example, after we ob-
tain R such that AR−1 is a well-conditioned basis, as described in Lemma 2.6,
one can then construct a (1± ε)-distortion subspace-preserving sampling ma-
trix S in O(nnz(A) · logn) time. We may view that the price we pay for
obtaining S is very low in terms of running time. Since S is a sampling
matrix with constant distortion factor and since the dimension of SA is inde-
pendent of n, we can apply additional operations on that smaller matrix in
order to obtain a better condition number, without much additional running
time, in theory at least, if n � poly(d), for some low-degree poly(d).
Since the bottleneck for ellipsoid rounding is its running time, when compared
to QR-type methods, one possibility is to apply ellipsoid rounding on SA.
Since the bigger dimension of SA only depends on d, the running time for
computing R via ellipsoid rounding will be acceptable if n � poly(d). As for
the condition number, for any general �1 subspace embedding Π satisfying
(2.2), i.e., which preserves the �1 norm up to some factor determined by d,
including S, if we apply ellipsoid rounding on ΠA, then the resulting R may
still satisfy (2.3) with some η. In detail, viewing R−1x as a vector in R

d, from
(2.2), we have

(1/κ2)‖ΠAR−1x‖1 ≤ ‖AR−1x‖1 ≤ κ1‖ΠAR−1x‖1.
In (2.3), replace A with ΠA, and combining the inequalities above, we have

(1/κ2)‖x‖2 ≤ ‖AR−1x‖1 ≤ ηκ1‖x‖2.
With appropriate scaling, one can show that AR−1 is a well-conditioned
matrix with κ = dηκ1κ2. Especially, when S has constant distortion, say,
(1 ± 1/2), the condition number is preserved at sampling complexity O(d2),
while the running time has been reduced a lot, when compared to the vanilla
ellipsoid rounding method. (See Algorithm 2 (SPC2) below for a version of
this method.)
A second possibility is to view S as a sampling matrix satisfying (2.2) with
Π = S. Then, according to our discussion of the QR-type methods, if we
compute the QR factorization of SA, we may expect the resulting AR−1 to
be a well-conditioned basis with lower condition number κ. As for the running
time, QR factorization on a smaller matrix will be inconsequential, in theory
at least. (See Algorithm 3 (SPC3) below for a version of this method.)

In the remainder of this subsection, we will describe three related methods for
computing a well-conditioned basis that we will use in our empirical evaluations.
Recall that Table 1 provides a summary of these three methods and the other methods
that we will use.
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Algorithm 1. SPC1: Vanilla QR-type method with sparse Cauchy transform.

Input: A ∈ R
n×d with full column rank.

Output: R−1 ∈ R
d×d such that AR−1 is a well-conditioned basis with κ ≤

O(d
13
2 log

11
2 d).

1: Construct a low-distortion embedding matrix Π1 ∈ R
r1×n of (A, ‖ · ‖1) via

Lemma 2.5.
2: Compute R ∈ R

d×d such that AR−1 is a well-conditioned basis for A via QR
factorization of Π1A.

Algorithm 2. SPC2: QR + ER-type method with sparse Cauchy transform.

Input: A ∈ R
n×d with full column rank.

Output: R−1 ∈ R
d×d such that AR−1 is a well-conditioned basis with κ ≤ 6d2.

1: Construct a low-distortion embedding matrix Π1 ∈ R
r1×n of (A, ‖ · ‖1) via

Lemma 2.5.
2: Construct R̃ ∈ R

d×d such that AR̃−1 is a well-conditioned basis for A via QR
factorization of Π1A.

3: Compute a (1 ± 1/2)-distortion sampling matrix S̃ ∈ R
poly(d)×n of (A, ‖ · ‖1) via

Lemma 2.6.
4: Compute R ∈ R

d×d by ellipsoid rounding for S̃A via Lemma 2.7.

We start with the algorithm obtained when we use the sparse Cauchy transform
from [13] as the random projection Π in a vanilla QR-type method. We call it SPC1
since we will describe two of its variants below. Our main result for Algorithm 1 is
given in Lemma 2.9. Since the proof is quite straightforward, we omit it here.

Lemma 2.9. Given A ∈ R
n×d with full rank, Algorithm 1 takes O(nnz(A) · logn)

time to compute a matrix R ∈ R
d×d such that with a constant probability, AR−1 is a

well-conditioned basis for A with κ ≤ O(d
13
2 log

11
2 d).

Next, we summarize the two combined methods described above in Algorithms 2
and 3. Since they are variants of SPC1, we call them SPC2 and SPC3, respectively.
Algorithm 2 originally appeared as the first four steps of Algorithm 2 in [13]. Our
main result for Algorithm 2 is given in Lemma 2.10; since the proof of this lemma is
very similar to the proof of Theorem 7 in [13], we omit it here. Algorithm 3 is new
to this paper. Our main result for Algorithm 3 is given in Lemma 2.11.

Lemma 2.10. Given A ∈ R
n×d with full rank, Algorithm 2 takes O(nnz(A)· logn)

time to compute a matrix R ∈ R
d×d such that with a constant probability, AR−1 is a

well-conditioned basis for A with κ ≤ 6d2.
Lemma 2.11. Given A ∈ R

n×d with full rank, Algorithm 3 takes O(nnz(A)· logn)
time to compute a matrix R ∈ R

d×d such that with a constant probability, AR−1 is a

well-conditioned basis for A with κ ≤ O(d
19
4 log

11
4 d).

Proof. By Lemma 2.5, in step 1, Π is a low-distortion embedding satisfying
(2.2) with κ1κ2 = O(d3 log3 d), and r1 = O(d5 log5 d). As a matter of fact, as we
discussed in section 2.2, the resulting AR−1 in step 2 is a well-conditioned basis with

κ = O(d
13
2 log

11
2 d). In step 3, by Lemma 2.6, the sampling complexity required for

obtaining a (1 ± 1/2)-distortion sampling matrix is s̃ = O(d
15
2 log

11
2 d). Finally, if

we view S̃ as a low-distortion embedding matrix with r = s̃ and κ2κ1 = 3, then
the resulting R in step 4 will satisfy that AR−1 is a well-conditioned basis with

κ = O(d
19
4 log

11
4 d).
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Algorithm 3. SPC3: QR + QR-type method with sparse Cauchy transform.

Input: A ∈ R
n×d with full column rank.

Output: R−1 ∈ R
d×d such that AR−1 is a well-conditioned basis with κ ≤

O(d
19
4 log

11
4 d).

1: Construct a low-distortion embedding matrix Π1 ∈ R
r1×n of (A, ‖ · ‖1) via

Lemma 2.5.
2: Construct R̃ ∈ R

d×d such that AR̃−1 is a well-conditioned basis for A via QR
factorization of Π1A.

3: Compute a (1 ± 1/2)-distortion sampling matrix S̃ ∈ R
poly(d)×n of (A, ‖ · ‖1) via

Lemma 2.6.
4: Compute R ∈ R

d×d via the QR factorization of S̃A.

For the running time, it takes O(nnz(A)) time for completing step 1. In step 2,
the running time is r1d

2 = poly(d). As Lemma 2.6 points out, the running time for
constructing S̃ in step 3 is O(nnz(A) · logn). Since the large dimension of S̃A is a
low-degree polynomial of d, the QR factorization of it costs s̃d2 = poly(d) time in
step 4. Overall, the running time of Algorithm 3 is O(nnz(A) · log n).

Both Algorithm 2 and Algorithm 3 have additional steps (steps 3 and 4) when
compared with Algorithm 1, and this leads to some improvements, at the cost of
additional computation time. For example, in Algorithm 3 (SPC3), we obtain a well-
conditioned basis with smaller κ when comparing to Algorithm 1 (SPC1). As for
the running time, it will still be O(nnz(A) · logn), since the additional time is for
constructing sampling matrix and solving a QR factorization of a matrix whose di-
mensions are determined by d. Note that when we summarize these results in Table 1,
we explicitly list the additional running time for SPC2 and SPC3 in order to show the
trade-off between these SPC-derived methods. We will evaluate the performance of
all these methods on quantile regression problems in section 4 (except for FC, since it
is similar to but worse than SPC1, and ellipsoid rounding, since on the full problem
it is too expensive).

Remark. For all the methods we described above, the output is not the well-
conditioned matrix U , but instead it is the matrix R, the inverse of which transforms
A into U .

Remark. As we can see in Table 1, with respect to conditioning quality, SPC2
has the lowest condition number κ, followed by SPC3 and then SPC1, which has the
worst condition number. On the other hand, with respect to running time, SPC1 is
the fastest, followed by SPC3 and then SPC1, which is the slowest. (The reason for
this ordering of the running time is that SPC2 and SPC3 need additional steps and
ellipsoid rounding takes longer running time that doing a QR decomposition.)

3. Main theoretical results. In this section, we present our main theoretical
results on (1± ε)-distortion subspace-preserving embeddings and our fast randomized
algorithm for quantile regression.

3.1. Main technical ingredients. In this subsection, we present the main tech-
nical ingredients underlying our main algorithm for quantile regression. We start with
a result which says that if we sample sufficiently many (but still only poly(d)) rows
according to an appropriately defined nonuniform importance sampling distribution
(of the form given in (3.1) below), then we obtain a (1 ± ε)-distortion embedding
matrix with respect to the loss function of quantile regression. Note that the form of
this lemma is based on ideas from [6, 5].
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Lemma 3.1 (subspace-preserving sampling lemma). Given A ∈ R
n×d, let U ∈

R
n×d be a well-conditioned basis for A with condition number κ. For s > 0, define

(3.1) p̂i ≥ min{1, s · ‖U(i)‖1/‖U‖1},
and let S ∈ R

n×n be a random diagonal matrix with Sii = 1/p̂i with probability p̂i and
0 otherwise. Then when ε < 1/2 and

s ≥ τ

1− τ

27κ

ε2

(
d log

(
τ

1− τ

18

ε

)
+ log

(
4

δ

))

with probability at least 1− δ, for every x ∈ R
d,

(1− ε)ρτ (Ax) ≤ ρτ (SAx) ≤ (1 + ε)ρτ (Ax).(3.2)

Proof. Since U is a well-conditioned basis for the range space of A, to prove (3.2)
it is equivalent to prove the following holds for all y ∈ R

d:

(1− ε)ρτ (Uy) ≤ ρτ (SUy) ≤ (1 + ε)ρτ (Uy).(3.3)

To prove that (3.3) holds for any y ∈ R
d, first we show that (3.3) holds for any fixed

y ∈ R
d; second, we apply a standard γ-net argument to show that (3.3) holds for

every y ∈ R
d.

Assume that U is (α, β)-conditioned with κ = αβ. For i ∈ [n], let vi = U(i)y. Then
ρτ (SUy) =

∑
i∈[n] ρτ (Siivi) =

∑
i∈[n] Siiρτ (vi) since Sii ≥ 0. Let wi = Siiρτ (vi) −

ρτ (vi) be a random variable, and we have

wi =

{
( 1
p̂i

− 1)ρτ (vi) with probability p̂i;

−ρτ (vi) with probability 1− p̂i.

Therefore, E[wi] = 0,Var[wi] = ( 1
p̂i

− 1)ρτ (vi)
2, |wi| ≤ 1

p̂i
ρτ (vi). Note here we only

consider i such that s · ‖U(i)‖1/‖U‖1 < 1 since otherwise we have p̂i = 1, and the
corresponding term will not contribute to the variance. According to our definition,
p̂i ≥ s · ‖U(i)‖1/‖U‖1 = s · ti. Consider the following:

ρτ (vi) = ρτ (U(i)y) ≤ τ‖U(i)y‖1 ≤ τ‖(U(i))‖1‖y‖∞.

Hence,

|wi| ≤ 1

p̂i
ρτ (vi) ≤ 1

p̂i
τ‖U(i)‖1‖y‖∞ ≤ τ

s
‖U‖1‖y‖∞

≤ 1

s

τ

1− τ
αβρτ (Uy) := M.

Also, ∑
i∈[n]

Var[wi] ≤
∑
i∈[n]

1

p̂i
ρτ (vi)

2 ≤ Mρτ (Uy).

Applying the Bernstein inequality to the zero-mean random variables wi gives

Pr

⎡
⎣
∣∣∣∣∣∣
∑
i∈[n]

wi

∣∣∣∣∣∣ > ε

⎤
⎦ ≤ 2 exp

( −ε2

2
∑

iVar[wi] +
2
3Mε

)
.
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Since
∑

i∈[n] wi = ρτ (SUy)−ρτ(Uy), setting ε to ερτ (Uy) and plugging all the results
we derive above, we have

Pr [|ρτ (SUy)− ρτ (Uy)| > ερτ (Uy)] ≤ 2 exp

( −ε2ρ2τ (Uy)

2Mρτ (Uy) + 2ε
3 Mρτ (Uy)

)
.

Let’s simplify the exponential term on the right-hand side of the above expression:

−ε2ρ2τ (Uy)

2Mρτ(Uy) + 2ε
3 Mρτ (Uy)

=
−sε2

αβ

1− τ

τ

1

2 + 2ε
3

≤ −sε2

3αβ

1− τ

τ
.

Therefore, when s ≥ τ
1−τ

27αβ
ε2 (d log( 3γ )+log(4δ )), with probability at least 1−(γ/3)dδ/2,

(1− ε/3)ρτ(Uy) ≤ ρτ (SUy) ≤ (1 + ε/3)ρτ(Uy),(3.4)

where γ will be specified later.

We will show that, for all z ∈ range(U),

(3.5) (1 − ε)ρτ (z) ≤ ρτ (Sz) ≤ (1 + ε)ρτ (z).

By the positive linearity of ρτ (·), it suffices to show the bound above holds for all z
with ‖z‖1 = 1.

Next, let Z = {z ∈ range(U) | ‖z‖1 ≤ 1} and construct a γ-net of Z, denoted by
Zγ , such that for any z ∈ Z, there exists a zγ ∈ Zγ that satisfies ‖z − zγ‖1 ≤ γ. By
[1], the number of elements in Zγ is at most (3/γ)d. Hence, with probability at least
1− δ/2, (3.4) holds for all zγ ∈ Zγ .

We claim that with suitable choice γ, with probability at least 1− δ/2, S will be
a (1 ± 2/3)-distortion embedding matrix of (A, ‖ · ‖1). To show this, first we state a
similar result for ‖ · ‖1 from Theorem 6 in [6] with p = 1 as follows.

Lemma 3.2 (�1 subspace-preserving sampling lemma). Given A ∈ R
n×d, let

U ∈ R
n×d be an (α, β)-conditioned basis for A. For s > 0, define

p̂i ≥ min{1, s · ‖U(i)‖1/‖U‖1},

and let S ∈ R
n×n be a random diagonal matrix with Sii = 1/p̂i with probability p̂i,

and 0 otherwise. Then when ε < 1/2 and

s ≥ 32αβ

ε2

(
d log

(
12

ε

)
+ log

(
2

δ

))

with probability at least 1− δ, for every x ∈ R
d,

(1− ε)‖Ax‖1 ≤ ‖SAx‖1 ≤ (1 + ε)‖Ax‖1.(3.6)

Note here we change the constraint ε ≤ 1/7 and the original theorem to ε ≤ 1/2
above. One can easily show that the result still holds with such a setting. If we set
ε = 2/3 and the failure probability to be at most δ/2, the construction of S defined
above satisfies conditions of Lemma 3.2 when the expected sampling complexity s ≥
s̄ := 72αβ

(
d log (18) + log

(
4
δ

))
. Then our claim for S holds. Hence we only need to

make sure with suitable choice of γ, we have s ≥ s̄.
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For any z with ‖z‖1 = 1, we have

|ρτ (Sz)− ρτ (z)| ≤ |ρτ (Sz)− ρτ (Szγ)|+ |ρτ (Szγ)− ρτ (zγ)|+ |ρτ (zγ)− ρτ (z)|
≤ τ‖S(z − zγ)‖1 + (ε/3)ρτ(zγ) + τ‖zγ − z‖1
≤ τ |‖S(z − zγ)‖1 − ‖(z − zγ)‖1|+ (ε/3)ρτ (z) + (ε/3)ρτ (zγ − z)

+2τ‖zγ − z‖1
≤ 2τ/3‖z − zγ‖1 + (ε/3)ρτ (z) + τ(ε/3)‖zγ − z‖1 + 2τ‖zγ − z‖1
≤ (ε/3)ρτ (z) + τγ(2/3 + ε/3 + 2)

≤
(
ε/3 +

τ

1− τ
γ(2/3 + ε/3 + 2)

)
ρτ (z)

≤ ερτ (z),

where we take γ = 1−τ
6τ ε, and the expected sampling size becomes

s =
τ

1− τ

27αβ

ε2

(
d log

(
τ

1− τ

18

ε

)
+ log

(
4

δ

))
.

When ε < 1/2, we will have s > s̄. Hence the claim for S holds and (3.5) holds for
every z ∈ range(U).

Since the proof is involved with two random events with failure probability at
most δ/2, by a simple union bound, (3.3) holds with probability at least 1 − δ. Our
result follows since κ = αβ.

Remark. It is not hard to see that for any matrix S satisfying (3.2), the rank of
A is preserved.

Remark. Given such a subspace-preserving sampling matrix, it is not hard to show
that by solving the subsampled problem induced by S, i.e., by solving minx∈C ρτ (SAx),
one obtains a (1 + ε)/(1− ε)-approximate solution to the original problem. For more
details, see the proof for Theorem 3.4.

In order to apply Lemma 3.1 to quantile regression, we need to compute the
sampling probabilities in (3.1). This requires two steps: first, find a well-conditioned
basis U ; second, compute the �1 row norms of U . For the first step, we can apply
any method described in the previous subsection. (Other methods are possible, but
Algorithms 1, 2, and 3 are of particular interest due to their nearly input-sparsity
running time.) We will now present an algorithm that will perform the second step
of approximating the �1 row norms of U in the allotted O(nnz(A) · logn) time.

Suppose we have obtained R−1 such that AR−1 is a well-conditioned basis. Next,
consider computing p̂i from U (or from A and R−1), and note that forming U explicitly
is expensive both when A is dense and when A is sparse. In practice, however, we
will not need to form U explicitly, and we will not need to compute the exact value of
the �1-norm of each row of U . Indeed, it suffices to get estimates of ‖U(i)‖1, in which
case we can adjust the sampling complexity s to maintain a small approximation
factor. Algorithm 4 provides a way to compute the estimates of the �1 norm of
each row of U fast and construct the sampling matrix. The same algorithm was
used in [5] except for the choice of desired sampling complexity s and we present the
entire algorithm for completeness. Our main result for Algorithm 4 is presented in
Proposition 3.3.

Proposition 3.3 (fast construction of (1±ε)-distortion sampling matrix). Given
a matrix A ∈ R

n×d, and a matrix R ∈ R
d×d such that AR−1 is a well-conditioned

basis for A with condition number κ, Algorithm 4 takes O(nnz(A) · logn) time to
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Algorithm 4. Fast construction of (1± ε)-distortion sampling matrix of (A, ρτ (·)).
Input: A ∈ R

n×d, R ∈ R
d×d such that AR−1 is well-conditioned with condition

number κ, ε ∈ (0, 1/2), τ ∈ [1/2, 1).
Output: Sampling matrix S ∈ R

n×n.
1: Let Π2 ∈ R

d×r2 be a matrix of independent Cauchys with r2 = 15 log(40n).
2: Compute R−1Π2 and construct Λ = AR−1Π2 ∈ R

n×r2 .
3: For i ∈ [n], compute λi = medianj∈[r2]|Λij |.
4: For s = τ

1−τ
81κ
ε2 (d log( τ

1−τ
18
ε ) + log 80) and i ∈ [n], compute probabilities

p̂i = min

{
1, s · λi∑

i∈[n] λi

}
.

5: Let S ∈ R
n×n be diagonal with independent entries

Sii =

{
1
p̂i

with probability p̂i;

0 with probability 1− p̂i.

compute a sampling matrix S ∈ R
ŝ×n (with only one nonzero per row), such that with

probability at least 0.9, S is a (1 ± ε)-distortion sampling matrix. That is, for all
x ∈ R

d,

(3.7) (1− ε)ρτ (Ax) ≤ ρτ (SAx) ≤ (1 + ε)ρτ (Ax).

Further, with probability at least 1− o(1), ŝ = O (μκd log (μ/ε) /ε2), where μ = τ
1−τ .

Proof. In this lemma, slightly different from the previous notation, we will use
s and ŝ to denote the actual number of rows selected and the input parameter for
defining the sampling probability, respectively. From Lemma 3.1, a (1± ε)-distortion
sampling matrix S could be constructed by calculating the �1 norms of the rows of
AR−1. Indeed, we will estimate these row norms and adjust the sampling complexity
s. According to Lemma 12 in [5], with probability at least 0.95, the λi, i ∈ [n], we
compute in the first three steps of Algorithm 4 satisfy

1

2
‖U(i)‖1 ≤ λi ≤ 3

2
‖U(i)‖1,

where U = AR−1. Conditioned on this high-probability event, we set

p̂i ≥ min

{
1, ŝ · λi∑

i∈[n] λi

}
.

Then we will have p̂i ≥ min{1, ŝ
3 ·

‖U(i)‖1

‖U‖1
}. Since ŝ/3 satisfies the sampling complexity

required in Lemma 3.1 with δ = 0.05, the corresponding sampling matrix S is con-
structed as desired. These are done in steps 4 and 5. Since the algorithm involves
two random events, by a simple union bound, with probability at least 0.9, S is a
(1± ε)-distortion sampling matrix.

By the definition of sampling probabilities, E[s] =
∑

i∈[n] p̂i ≤ ŝ. Note here s
is the sum of some random variables and it is tightly concentrated around its ex-
pectation. By a standard Bernstein bound, with probability 1 − o(1), s ≤ 2ŝ =
O (μκd log (μ/ε) /ε2), where μ = τ

1−τ , as claimed.
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Algorithm 5. Fast randomized algorithm for quantile regression.

Input: A ∈ R
n×d with full column rank, ε ∈ (0, 1/2), τ ∈ [1/2, 1).

Output: An approximated solution x̂ ∈ R
d to problem minimizex∈C ρτ (Ax).

1: Compute R ∈ R
d×d such that AR−1 is a well-conditioned basis for A via Algo-

rithm 1, 2, or 3.
2: Compute a (1± ε)-distortion embedding S ∈ R

n×n of (A, ρτ (·)) via Algorithm 4.
3: Return x̂ ∈ R

d that minimizes ρτ (SAx) with respect to x ∈ C.

Now let’s compute the running time in Algorithm 4. The main computational
cost comes from steps 2, 3, and 5. The running time in other steps will be dominated
by it. It takes d2r2 time to compute R−1Π2; then it takes O(nnz(A) · r2) time to
compute AR−1Π2; and finally it takes O(n) time to compute all the λi and construct
S. Since r2 = O(logn), in total, the running time is O((d2 + nnz(A)) log n + n) =
O(nnz(A) · logn).

Remark. Such a technique can also be used to fast approximate the �2 row
norms of a well-conditioned basis by postmultiplying a matrix consisted of Gaussian
variables; see [7].

Remark. In the text before Proposition 3.3, s denotes an input parameter for
defining the importance sampling probabilities. However, the actual sample size might
be less than that. Since Proposition 3.3 is about the construction of the sampling
matrix S, we let ŝ denote the actual number of row selected. Also, as stated, the
output of Algorithm 4 is an n × n matrix, but if we zero-out the all-zero rows, then
the actual size of S is indeed ŝ by d as described in Proposition 3.3. Throughout the
following text, by sampling size s, we mean the desired sampling size which is the
parameter in the algorithm.

3.2. Main algorithm. In this subsection, we state our main algorithm for com-
puting an approximate solution to the quantile regression problem. Recall that to
compute a relative-error approximate solution, it suffices to compute a (1±ε)-distortion
sampling matrix S. To construct S, we first compute a well-conditioned basis U with
Algorithm 1, 2, or 3 (or some other conditioning method), and then we apply Algo-
rithm 4 to approximate the �1 norm of each row of U . These procedures are summa-
rized in Algorithm 5. The main quality-of-approximation result for this algorithm by
using Algorithm 2 is stated in Theorem 3.4.

Theorem 3.4 (fast quantile regression). Given A ∈ R
n×d and ε ∈ (0, 1/2), if

Algorithm 2 is used in step 1, Algorithm 5 returns a vector x̂ that, with probability at
least 0.8, satisfies

ρτ (Ax̂) ≤
(
1 + ε

1− ε

)
ρτ (Ax

∗),

where x∗ is an optimal solution to the original problem. In addition, the algorithm to
construct x̂ runs in time

O(nnz(A) · logn) + φ
(O(μd3 log(μ/ε)/ε2), d

)
,

where μ = τ
1−τ and φ(s, d) is the time to solve a quantile regression problem of size

s× d.
Proof. In step 1, by Lemma 2.10, the matrix R ∈ R

d×d computed by Algo-
rithm 2 satisfies that with probability at least 0.9, AR−1 is a well-conditioned basis
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for A with κ = 6d2. The probability bound can be attained by setting the cor-
responding constants sufficiently large. In step 2, when we apply Algorithm 4 to
construct the sampling matrix S, by Proposition 3.3, with probability at least 0.9,
S will be a (1 ± ε)-distortion sampling matrix of (A, ρτ (·)). Solving the subproblem
minx∈C ρτ (SAx) gives a (1 + ε)/(1− ε) solution to the original problem (1.3). This is
because

(3.8) ρτ (Ax̂) ≤ 1

1− ε
ρτ (SAx̂) ≤ 1

1− ε
ρτ (SAx

∗) ≤ 1 + ε

1− ε
ρτ (Ax

∗),

where the first and third inequalities come from (3.7) and the second inequality comes
from the fact that x̂ is the minimizer of the subproblem. Hence the solution x̂ returned
by step 3 satisfies our claim. The whole algorithm involves two random events, and
the overall success probability is at least 0.8.

Now let’s compute the running time for Algorithm 5. In step 1, by Lemma 2.10,
the running time for Algorithm 2 to compute R is O(nnzA). By Proposition 3.3, the
running time for step 2 is O(nnz(A) · log n). Furthermore, as stated in Proposition 3.3
and κ(AR−1) = 2d2, with probability 1 − o(1), the actual sampling complexity is
O (μd3 log (μ/ε) /ε2), where μ = τ/(1 − τ), and it takes φ

(O (μd3 log (μ/ε) /ε2) , d)
time to solve the subproblem in step 3. This follows the overall running time of
Algorithm 5 as claimed.

Remark. As stated, Theorem 3.4 uses Algorithm 2 in step 3; we did this since it
leads to the best known running time results in worst-case analysis, but our empirical
results will indicate that due to various trade-offs the situation is more complex in
practice.

Remark. Our theory provides a bound on the solution quality, as measured by the
objective function of the quantile regression problem, and it does not provide bounds
for the difference between the exact solution vector and the solution vector returned
by our algorithm. We will, however, compute this latter quantity in our empirical
evaluation.

4. Empirical evaluation on medium-scale quantile regression. In this
section and the next section, we present our main empirical results. We have evalu-
ated an implementation of Algorithm 5 using several different conditioning methods
in step 1. We have considered both simulated data and real data, and we have con-
sidered both medium-sized data as well as terabyte-scale data. In this section, we will
summarize our results for medium-sized data. The results on terabyte-scale data can
be found in section 5.

Simulated skewed data. For the synthetic data, in order to increase the difficulty
for sampling, we will add imbalanced measurements to each coordinates of the so-
lution vector. A similar construction for the test data appeared in [5]. Due to the
skewed structure of the data, we will call this data set “skewed data” in the following
discussion. This data set is generated in the following way:

1. Each row of the design matrix A is a canonical vector. Suppose the number
of measurements on the jth column is cj, where cj = qcj−1, for j = 2, . . . , d. Here
1 < q ≤ 2. A is an n× d matrix.

2. The true vector x∗ with length d is a vector with independent Gaussian
entries. Let b∗ = Ax∗.

3. The noise vector ε is generated with independent Laplacian entries. We scale
ε such that ‖ε‖/‖b∗‖ = 0.2. The response vector is given by
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bi =

{
500εi with probability 0.001;

b∗i + εi otherwise.

When making the experiments, we require c1 ≥ 161. This implies that if we choose
s/n ≥ 0.01 and perform the uniform sampling, with probability at least 0.8, at least
one row in the first block (associated with the first coordinate) will be selected, due
to 1 − (1 − 0.01)161 ≥ 0.8. Hence, if we choose s ≥ 0.01n, we may expect uniform
sampling to produce an acceptable estimation.

Real census data. For the real data, we consider a data set consisting of a 5%
sample of the U.S. 2000 census data,2 consisting of annual salary and related features
of people who reported that they worked 40 or more weeks in the previous year and
worked 35 or more hours per week. The size of the design matrix is 5× 106 by 11.

The remainder of this section will consist of six subsections, the first five of which
will show the results of experiments on the skewed data; section 4.6 will show the
results on census data. In more detail, sections 4.1, 4.2, 4.3, and 4.4 will summarize
the performance of the methods in terms of solution quality as the parameters s, n,
d, and τ , respectively, are varied; section 4.5 will show how the running time changes
as s, n, and d change.

Before showing the details, we provide a quick summary of the numerical results.
We show the high quality of approximation on both objective value and solution vector
by using our main algorithm, i.e., Algorithm 5, with various conditioning methods.
Among all the conditioning methods, SPC2 and SPC3 show higher accuracy than
other methods. They can achieve two-digit accuracy by sampling only 1% of the rows
for a moderately large data set. Also, we show that using conditioning yields much
higher accuracy, especially when approximating the solution vector, as we can see in
Figure 1. Next, we demonstrate that the empirical results are consistent to our theory,
that is, when we fix the lower dimension of the data set, d, and fix the conditioning
method we use, we always achieve the same accuracy, regardless of how large the
higher dimension n is, as shown in Figure 3. In Figure 5, we explore the relationship
between the accuracy and the lower dimension d when n is fixed. The accuracy is
monotonically decreasing as d increases. We also show that our algorithms are reliable
for τ ranging from 0.05 to 0.95, as shown in Figure 6, and the magnitude of the relative
error remains almost the same. As for the running time comparison, in Figures 7, 8,
and 9, we show that the running time of Algorithm 5 with a different conditioning
method is consistent with our theory. Moreover, SPC1 and SPC3 have a much better
scalability than other methods, including the standard solver ipm and best previous
sampling algorithm prqfn. For example, for n = 1e6 and d = 280, we can get
at least one-digit accuracy in a reasonable time, while we can only solve problem
with size 1e6 by 180 exactly by using the standard solver in that same amount of
time.

4.1. Quality of approximation when the sampling size s changes. As
discussed in section 2.2, we can use one of several methods for the conditioning step,
i.e., for finding the well-conditioned basis U = AR−1 in step 1 of Algorithm 5. Here,
we will consider the empirical performance of six methods for doing this conditioning
step, namely, SC, SPC1, SPC2, SPC3, NOCO, and UNIF. The first four methods (SC,
SPC1, SPC2, SPC3) are described in section 2.2; NOCO stands for “no conditioning,”
meaning the matrix R in the conditioning step is taken to be identity; UNIF stands

2U.S. Census, http://www.census.gov/census2000/PUMS5.html.

http://www.census.gov/census2000/PUMS5.html
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for the uniform sampling method, which we include here for completeness. Note that
for all the methods, we compute the row norms of the well-conditioned basis exactly
instead of estimating them with Algorithm 4. The reason is that this permits a cleaner
evaluation of the quantile regression algorithm, as this may reduce the error due to
the estimating step. We have, however, observed similar results if we approximate
the row norms well.

Rather than determining the sample size from a given tolerance ε, we let the
sample size s vary in a range as an input to the algorithm. Also, for a fixed data
set, we will show the results when τ = 0.5, 0.75, 0.95. In our figure, we will plot the
first and the third quartiles of the relative errors of the objective value and solution
measured in three different norms from 50 independent trials. We restrict the y axis
in the plots to the range of [0, 100] to show more details. We start with a test on
skewed data with size 1e6× 50. (Recall that by 1e6× 50, we mean that n = 1× 106

and d = 50.) The resulting plots are shown in Figure 1.

From these plots, if we look at the sampling size required for generating at least
one-digit accuracy, then SPC2 needs the fewest samples, followed by SPC3 and then
SPC1. This is consistent with the order of the condition numbers of these methods.
For SC, although in theory it has good condition number properties, in practice it
performs worse than other methods. Not surprisingly, NOCO and UNIF are not
reliable when s is very small, e.g., less than 1e4.

When the sampling size s is large enough, the accuracy of each conditioning
method is close to the others in terms of the objective value. Among these, SPC3
performs slightly better than others. When estimating the actual solution vectors, the
conditioning-based methods behave substantially better than the two naive methods.
SPC2 and SPC3 are the most reliable methods since they can yield the least relative
error for every sample size s. NOCO is likely to sample the outliers, and UNIF
cannot get accurate answer until the sampling size s ≥ 1e4. This accords with our
expectations. For example, when s is less than 1e4, as we pointed out in the remark
below the description of the skewed data, it is very likely that none of the rows in the
first block corresponding to the first coordinate will be selected. Thus, poor estimation
will be generated due to the imbalanced measurements in the design matrix. Note
that from the plots we can see that if a method fails with some sampling complexity s,
then for that value of s the relative errors will be huge (e.g., larger than 100, which is
clearly a trivial result). Note also that all the methods can generate at least one-digit
accuracy if s is large enough.

It is worth mentioning the performance difference among SPC1, SPC2, and SPC3.
In Table 1, we show the trade-off between running time and condition number for the
three methods. As we pointed out, SPC2 always needs the least sampling complexity
to generate two-digit accuracy, followed by SPC3 and then SPC1. When s is large
enough, SPC2 and SPC3 perform substantially better than SPC1. As for the running
time, SPC1 is the fastest, followed by SPC3 and then SPC2. Again, all these follow
the theory about our SPC methods. We will present a more detailed discussion for
the running time in section 4.5.

Although our theory doesn’t say anything about the quality of the solution vector
itself (as opposed to the value of the objective function), we evaluate this here. To
measure the approximation to the solution vectors, we use three norms (the �1, �2,
and �∞ norms). From Figure 1, we see that the performance among these methods is
qualitatively similar for each of the three norms, but the relative error is higher when
measured in the �∞ norm. For more detail, see Table 2, where we show the exact
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(a) τ = 0.5, |f − f∗|/|f∗|
10

2
10

3
10

4
10

5
10

610
−6

10
−4

10
−2

10
0

10
2

sample size

|f−
f* |/|

f* |

τ = 0.75

 

 

SC
SPC1
SPC2
SPC3
NOCO
UNIF

(b) τ = 0.75, |f − f∗|/|f∗|
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(c) τ = 0.95, |f − f∗|/|f∗|
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(d) τ =0.5, ‖x− x∗‖2/‖x∗‖2
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(e) τ = 0.75, ‖x− x∗‖2/‖x∗‖2
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(f) τ = 0.95, ‖x− x∗‖2/‖x∗‖2
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(g) τ = 0.5, ‖x− x∗‖1/‖x∗‖1
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(h) τ = 0.75, ‖x− x∗‖1/‖x∗‖1
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(i) τ = 0.95, ‖x− x∗‖1/‖x∗‖1
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(j) τ = 0.5, ‖x−x∗‖∞/‖x∗‖∞
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(k) τ =0.75, ‖x−x∗‖∞/‖x∗‖∞
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(l) τ = 0.5, ‖x−x∗‖∞/‖x∗‖∞

Fig. 1. The first (solid lines) and third (dashed lines) quartiles of the relative errors of the
objective value (namely, |f − f∗|/|f∗|) and solution vector (measured in three different norms,
namely, the �2, �1, and �∞ norms), by using 6 different methods, among 50 independent trials. The
test is on skewed data with size 1e6 by 50. The three columns correspond to τ = 0.5, 0.75, 0.95,
respectively.

quartiles of the relative error on vectors for each methods for s = 5e4 and τ = 0.75.
Not surprisingly, NOCO and UNIF are not among the reliable methods when s is
small (and they get worse when s is even smaller). Note that the relative error for
each method doesn’t change substantially when τ takes different values. We present
a more detailed discussion of the τ dependence in section 4.4.

(We note also that for subsequent figures in subsequent subsections, we obtained
similar qualitative trends for the errors in the approximate solution vectors when the
errors were measured in different norms. Thus, due to this similarity and to save
space, in subsequent figures we will only show errors for the �2 norm.)
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Table 2

The first and third quartiles of relative errors of the solution vector, measured in �1, �2, and
�∞ norms. The test data set is the skewed data with size 1e6 × 50, the sampling size s = 5e4, and
τ = 0.75.

‖x− x∗‖2/‖x∗‖2 ‖x− x∗‖1/‖x∗‖1 ‖x− x∗‖∞/‖x∗‖∞
SC [0.0121, 0.0172] [0.0093, 0.0122] [0.0229, 0.0426]

SPC1 [0.0108, 0.0170] [0.0081, 0.0107] [0.0198, 0.0415]

SPC2 [0.0079, 0.0093] [0.0061, 0.0071] [0.0115, 0.0152]

SPC3 [0.0094, 0.0116] [0.0086, 0.0103] [0.0139, 0.0184]

NOCO [0.0447, 0.0583] [0.0315, 0.0386] [0.0769, 0.1313]

UNIF [0.0396, 0.0520] [0.0287, 0.0334] [0.0723, 0.1138]

4.2. Quality of approximation when the higher dimension n changes.
Next, we describe how the performance of our algorithm varies when higher dimension
n changes. (We present the results when the lower dimension d changes in section 4.3.)
Figures 2 and 3 summarize our results.

Figure 2 shows the performance of the relative error of the objective value and
solution vector by using the six different methods, as n is varied, for fixed values of
τ = 0.75 and d = 50. For each row, the three figures come from three data sets with n
taking value in 1e5, 5e5, 1e6. (Recall that in these experiments, we only list the plots
showing the relative error on vectors measured in �2 norm. Since the plots for the
�1 and �∞ norms are similar, we omit them.) We see that when d is fixed, the basic
structure in the plots that we observed before is preserved when n takes three different
values. In particular, the minimum sampling complexity s needed for each method
for yielding high accuracy does not vary a lot. When s is large enough, the relative
performance among all the methods is similar, and when all the parameters are fixed
except for n, the relative error for each method does not change quantitatively.

We will also let n take a wider range of values. Figure 3 shows the change of
relative error on the objective value and solution vector by using SPC3 and letting
n vary from 1e4 to 1e6 and d = 50 fixed. Recall from Theorem 3.4 that for a given
tolerance ε, the required sampling complexity s depends only on d. That is, if we fix
the sampling size s and d, then the relative error should not vary much, as a function
of n. If we inspect Figure 3, we see that the relative errors are almost constant as
a function of increasing n, provided that n is much larger than s. When s is very
close to n, since we are sampling roughly the same number of rows as in the full data,
we should expect lower errors. Also, we can see that by using SPC3, relative errors
remain roughly the same in magnitude.

4.3. Quality of approximation when the lower dimension d changes.
Next, we describe how the overall performance changes when the lower dimension
d changes. Figures 4 and 5 summarize our results. These figures show the same
quantities that were plotted in the previous subsection, except that here it is the
lower dimension d that is now changing, and the higher dimension n = 1e6 is fixed.
In Figure 4, we let d take values in 10, 50, 100, we set τ = 0.75, and we show the
relative error for all six conditioning methods. In Figure 5, we let d take more values
in the range of [10, 100], and we show the relative errors by using SPC3 for different
sampling sizes s and τ values.

For Figure 4, as d gets larger, the performance of the two naive methods does not
vary a lot. However, this increases the difficulty for conditioning methods to yield
two-digit accuracy. When d is quite small, most methods can yield two-digit accuracy
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(a) 1e5× 50, |f − f∗|/|f∗|
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(b) 5e5× 50, |f − f∗|/|f∗|
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(c) 1e6× 50, |f − f∗|/|f∗|
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(d) 1e5× 50, ‖x− x∗‖2/‖x∗‖2
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(e) 5e5× 50, ‖x− x∗‖2/‖x∗‖2
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(f) 1e6× 50, ‖x− x∗‖2/‖x∗‖2

Fig. 2. The first (solid lines) and third (dashed lines) quartiles of the relative errors of the
objective value (namely, |f − f∗|/|f∗|) and solution vector (namely, ‖x − x∗‖2/‖x∗‖2), when the
sample size s changes, for different values of n, while d = 50 by using 6 different methods, among
50 independent trials. The test is on skewed data and τ = 0.75. The three columns correspond to
n = 1e5, 5e5, 1e6, respectively.
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(a) τ = 0.5, |f − f∗|/|f∗|
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(b) τ = 0.75, |f − f∗|/|f∗|
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(c) τ = 0.95, |f − f∗|/|f∗|
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(d) τ = 0.5, ‖x− x∗‖2/‖x∗‖2
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(e) τ = 0.75, ‖x− x∗‖2/‖x∗‖2
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(f) τ = 0.95, ‖x− x∗‖2/‖x∗‖2

Fig. 3. The first (solid lines) and third (dashed lines) quartiles of the relative errors of the
objective value (namely, |f − f∗|/|f∗|) and solution vector (namely, ‖x − x∗‖2/‖x∗‖2), when n
varying from 1e4 to 1e6 and d = 50 by using SPC3, among 50 independent trials. The test is on
skewed data. The three columns correspond to τ = 0.5, 0.75, 0.95, respectively.

even when s is not large. When d becomes large, SPC2 and SPC3 provide good
estimation, even when s < 1000. The relative performance among these methods
remains unchanged. For Figure 5, the relative errors are monotonically increasing for
each sampling size. This is consistent with our theory that to yield high accuracy, the
required sampling size is a low-degree polynomial of d.
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(a) 1e6× 10, |f − f∗|/|f∗|
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(b) 1e6× 50, |f − f∗|/|f∗|
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(c) 1e6× 100, |f − f∗|/|f∗|
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(d) 1e6× 10, ‖x− x∗‖2/‖x∗‖2
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(e) 1e6× 50, ‖x− x∗‖2/‖x∗‖2
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(f) 1e6×100, ‖x−x∗‖2/‖x∗‖2

Fig. 4. The first (solid lines) and third (dashed lines) quartiles of the relative errors of the
objective value (namely, |f − f∗|/|f∗|) and solution vector (namely, ‖x − x∗‖2/‖x∗‖2), when the
sample size s changes, for different values of d, while n = 1e6 by using 6 different methods, among
50 independent trials. The test is on skewed data and τ = 0.75. The three columns correspond to
d = 10, 50, 100, respectively.
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(a) τ = 0.5, |f − f∗|/|f∗|
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(b) τ = 0.75, |f − f∗|/|f∗|
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(c) τ = 0.95, |f − f∗|/|f∗|
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(d) τ = 0.5, ‖x− x∗‖2/‖x∗‖2
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(e) τ = 0.75, ‖x− x∗‖2/‖x∗‖2
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(f) τ = 0.95, ‖x− x∗‖2/‖x∗‖2

Fig. 5. The first (solid lines) and the third (dashed lines) quartiles of the relative errors of
the objective value (namely, |f − f∗|/|f∗|) and solution vector (namely, ‖x− x∗‖2/‖x∗‖2), when d
varying from 10 to 100 and n = 1e6 by using SPC3, among 50 independent trials The test is on
skewed data. The three columns correspond to τ = 0.5, 0.75, 0.95, respectively.

4.4. Quality of approximation when the quantile parameter τ changes.
Next, we will let τ change, for a fixed data set and fixed conditioning method, and we
will investigate how the resulting errors behave as a function of τ . We will consider τ
in the range of [0.5, 0.9], equally spaced by 0.05, as well as several extreme quantiles
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Fig. 6. The first (solid lines) and the third (dashed lines) quartiles of the relative errors of
the objective value (namely, |f − f∗|/|f∗|) and solution vector (namely, ‖x − x∗‖2/‖x∗‖2), when
τ varies from 0.5 to 0.999 by using SPC1, SCP2, SPC3, among 50 independent trials. The test is
on skewed data with size 1e6 by 50. Within each plot, three sampling sizes are considered, namely,
1e4, 1e4, 1e5.

such as 0.975 and 0.98. We consider skewed data with size 1e6 × 50; our plots are
shown in Figure 6.

The plots in Figure 6 demonstrate that given the same method and sampling size
s, the relative errors are monotonically increasing but only very gradually, i.e., they
do not change very substantially in the range of [0.5, 0.95]. On the other hand, all the
methods generate high relative errors when τ takes extreme values very near 1 (or 0).
Overall, SPC2 and SPC3 perform better than SPC1. Although for some quantiles
SPC3 can yield slightly lower errors than SPC2, it too yields worst results when τ
takes on extreme values.

4.5. Evaluation on running time performance. In this subsection, we will
describe running time issues, with an emphasis on how the running time behaves as
a function of s, d, and n.

When the sampling size s changes. To start, Figure 7 shows the running time
for computing three subproblems associated with three different τ values by using
six methods (namely, SC, SPC1, SPC2, SPC3, NOCO, UNIF) when the sampling
size s changes. (This is simply the running time comparison for all six methods used
to generate Figure 1.) As expected, the two naive methods (NOCO and UNIF) run
faster than other methods in most cases—since they don’t perform the additional
step of conditioning. For s < 104, among the conditioning-based methods, SPC1
runs fastest, followed by SPC3 and then SPC2. As s increases, however, the faster
methods, including NOCO and UNIF, become relatively more expensive, and when
s ≈ 5e5, all the curves, except for SPC1, reach almost the same point.

To understand what is happening here, recall that we accept the sampling size
s as an input in our algorithm; we then construct our sampling probabilities by
p̂i = min{1, s · λi/

∑
λi}, where λi is the estimation of the �1 norm of the ith row

of a well-conditioned basis. (See step 4 in Algorithm 4.) Hence, s is not the exact
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Fig. 7. The running time for solving the three problems associated with three different τ values
by using six methods, namely, SC, SPC1, SPC2, SPC3, NOCO, UNIF, when the sampling size s
changes.

sampling size. Indeed, upon examination, in this regime when s is large, the ac-
tual sampling size is often much less than the input s. As a result, almost all the
conditioning-based algorithms are solving a subproblem with size, say, s/2× d, while
the two naive methods are solving subproblem with size about s×d. The difference of
running time for solving problems with these sizes can be quite large when s is large.
For conditioning-based algorithms, the running time mainly comes from the time for
conditioning and solving the subproblem. Thus, since SPC1 needs the least time for
conditioning, it should be clear why SPC1 needs much less time when s is very large.

When the higher dimension n changes. Next, we compare the running time of
our method with some competing methods when data size increases. The competing
methods are the primal-dual method, referred to as ipm, and that with preprocessing,
referred to as prqfn; see [15] for more details on these two methods.

We let the large dimension n increase from 1e5 to 1e8, and we fix s = 5e4. For
completeness, in addition to the skewed data, we will consider two additional data sets.
First, we also consider a design matrix with entries generated from independently and
identically distributed Gaussian distribution, where the response vector is generated
in the same manner as the skewed data. Also, we will replicate the census data 20
times to obtain a data set with size 1e8 by 11. For each n, we extract the leading
n × d submatrix of the replicated matrix, and we record the corresponding running
time. The results of running time on all three data sets are shown in Figure 8.

From the plots in Figure 8 we see that SPC1 runs faster than any other methods
across all the data sets, in some cases significantly so. SPC2, SPC3, and prqfn perform
similarly in most cases, and they appear to have a linear rate of increase. Also, the rel-
ative performance between each method does not vary a lot as the data type changes.

Notice that for the skewed data, when d = 50, SPC2 runs much slower than when
d = 10. The reason for this is that for conditioning-based methods, the running time
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Gaussian data with d = 11
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Replicated census data with d = 11

Fig. 8. The running time for five methods (ipm, prqfn, SPC1, SPC2, and SPC3) on the same
data set with d fixed and n changing. The sampling size s = 5e4, and the three columns correspond
to τ = 0.5, 0.75, 0.95, respectively.

is composed of two parts, namely, the time for conditioning and the time for solving
the subproblem. For SPC2, an ellipsoid rounding needs to be applied on a smaller
data set whose larger dimension is a polynomial of d. When the sampling size s is
small, i.e., the size of the subproblem is not too large, the dominant running time for
SPC2 will be the time for ellipsoid rounding, and as d increase (by, say, a factor of 5)
we expect a worse running time. Notice also that for all the methods, the running time
does not vary a lot when τ changes. Finally, notice that all the conditioning-based
methods run faster on skewed data, especially when d is small. The reason is that the
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Fig. 9. The running time for five methods (ipm, prqfn, SPC1, SPC2, and SPC3) for solving
skewed data, with n = 1e6, s = 1e4, when d varies. SPC1 and SPC3 show better scaling than other
methods when d < 180. For this reason, we keep running the experiments for SPC1 and SPC3 until
d = 270. When d < 100, the three conditioning-based methods can yield two-digit accuracy. When
for d ∈ [100, 180], they can yield one-digit accuracy.

running time for these three methods is of the order of input-sparsity time, and the
skewed data are very sparse.

When the lower dimension d changes. Finally, we will describe the scaling of the
running time as the lower dimension d changes. To do so, we fixed n = 1e6 and the
sampling size s = 1e4. We let all five methods run on the data set with d varying
from 5 up to 180. When d ≈ 200, the scaling was such that all the methods except
for SPC1 and SPC3 became too expensive. Thus, we let only SPC1 and SPC3 run
on additional data sets with d up to 270. The plots are shown in Figure 9.

From the plots in Figure 9, we can see that when d < 180, SPC1 runs significantly
faster than any other method, followed by SPC3 and prqfn. The performance of
prqfn is quite variable. The reason for this is that there is a step in prqfn that involves
uniform sampling, and the number of subproblems to be solved in each time might
vary a lot. The scalings of SPC2 and ipm are similar, and when d gets much larger,
say, d > 200, they may not be favorable due to the running time. When d < 180, all
the conditioning methods can yield at least one-digit accuracy. Although one can only
get an approximation to the true solution by using SPC1 and SPC3, they will be a
good choice when d gets even larger, say, up to several hundred, as shown in Figure 9.
We note that we could let d get even larger for SPC1 and SPC3, demonstrating that
SPC1 and SPC3 are able to run with a much larger lower dimension than the other
methods.

Remark. One may notice a slight but sudden change in the running time for
SPC1 and SPC3 at d ≈ 130. After we traced down the reason, we found that the
difference come from the time in the conditioning step (since the subproblems they
are solving have similar size), especially the time for performing the QR factorization.
At this size, it will be normal to take more time to factorize a slightly smaller matrix
due to the structure of the cache line, and it is for this reason that we see that minor
decrease in running time with increasing d. We point out that the running time of
our conditioning-based algorithm is mainly affected by the time for the conditioning
step. That is also the reason why it does not vary a lot when τ changes.

4.6. Evaluation on solution of census data. Here, we will describe more
about the accuracy of the census data when SPC3 is applied to it. The size of the
census data is roughly 5e6× 11.

We will generate plots that are similar to those in [10]. For each coefficient, we
will compute a few quantities of it, as a function of τ , when τ varies from 0.05 to



S104 JIYAN YANG, XIANGRUI MENG, AND MICHAEL W. MAHONEY

0 0.5 1
8

9

10

11

12

Quantile

In
te

rc
ep

t

(a) Intercept

0 0.5 1
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

Quantile

S
ex

(b) Sex

0 0.5 1
0.2

0.25

0.3

0.35

0.4

Quantile

A
ge

 ∈
 [3

0,
40

)

(c) Age ∈ [30, 40)

0 0.5 1
0.2

0.3

0.4

0.5

0.6

0.7

Quantile

A
ge

 ∈
 [4

0,
50

)

(d) Age ∈ [40, 50)

0 0.5 1
0.2

0.3

0.4

0.5

0.6

0.7

Quantile

A
ge

 ∈
 [5

0,
60

)

(e) Age ∈ [50, 60)

0 0.5 1
0.2

0.4

0.6

0.8

1

Quantile

A
ge

 ∈
 [6

0,
70

)

(f) Age ∈ [60, 70)

0 0.5 1
0

0.5

1

1.5

Quantile

A
ge

 ≥
 7

0

(g) Age ≥ 70

0 0.5 1
−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

Quantile

N
on

_w
hi

te

(h) Non white

0 0.5 1
0.08

0.09

0.1

0.11

0.12

0.13

Quantile

U
nm

ar
rie

d

(i) Unmarried

0 0.5 1
−0.2

−0.15

−0.1

−0.05

0

Quantile

E
du

ca
tio

n

(j) Education

0 0.5 1
0

0.005

0.01

0.015

0.02

Quantile

E
du

ca
tio

n2

(k) Education2

Solution of LS regression
Solution of LAD regression
Solution of Quantile regression
Approximate solution of Quantile
90% confidence intervals

(l) Legend

Fig. 10. Each subfigure is associated with a coefficient in the census data. The shaded area
shows a pointwise 90% confidence interval. The black curve inside is the true solution when τ
changes from 0.05 to 0.95. The blue and green lines correspond to the �2 and �1 solutions, respectively.
The two magenta curves show the first and third quartiles of solutions obtained by using SPC3,
among 200 independent trials with sampling size s = 5e4 (about 1% of the original data).

0.95. We compute a pointwise 90% confidence interval for each τ by bootstrapping.
These are shown as the shaded area in each subfigure. Also, we compute the quar-
tiles of the approximated solutions by using SPC3 from 200 independent trials with
sampling size s = 5e4 to show how close we can get to the confidence interval. In
addition, we also show the solution to the least square regression (LS) and least ab-
solute deviations regression (LAD) on the same problem. The plots are shown in
Figure 10.

From these plots we can see that although the two quartiles are not inside the
confidence interval, they are quite close, even for this value of s. The sampling size in
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each trial is only 5e4, which is about 1% of the original data, while for bootstrapping,
we are resampling the same number of rows as in the original matrix with replacement.
In addition, the median of these 50 solutions is in the shaded area and close to the true
solution. Indeed, for most of the coefficients, SPC3 can generate two-digit accuracy.
Note that we also computed the exact values of the quartiles; we don’t present them
here since they are very similar to those in Table 4 in terms of accuracy. See Table 4
in section 5 for more details. All in all, SPC3 performs quite well on this real data.

5. Empirical evaluation on large-scale quantile regression. In this sec-
tion, we continue our empirical evaluation with an evaluation of our main algorithm
applied to terabyte-scale problems. Here, the data sets are generated by “stacking”
the medium-scale data a few thousand times. Although this leads to “redundant”
data, which may favor sampling methods, this has the advantage that it leads to
terabyte-sized problems whose optimal solution at different quantiles are known. At
this terabyte scale, ipm has two major issues: memory requirement and running time.
Although shared memory machines with more than a terabyte RAM exist, they are
rare in practice (in 2013). Instead, the MapReduce framework is the de facto stan-
dard parallel environment for large data analysis. Apache Hadoop,3 an open source
implementation of MapReduce, is widely used in practice. Since our sampling algo-
rithm only needs several passes through the data and it is embarrassingly parallel, it
is straightforward to implement it on Hadoop.

For skewed data with size 1e6×50, we stack it vertically 2500 times. This leads to
data with size 2.5e9×50. In order to show the evaluations similar to Figure 1, we still
implement SC, SPC1, SPC2, SPC3, NOCO, and UNIF. Figure 11 shows the relative
errors on the replicated skewed data set by using the six methods. We only show the
results for τ = 0.5 and 0.75 since the conditioning methods tend to generate abnormal
results when τ = 0.95. These plots correspond with and should be compared to the
four subfigures in the first two rows and columns of Figure 1.

As can be seen, the method preserves the same structure as when the method
is applied to the medium-scale data. Still, SPC2 and SPC3 perform slightly better
than other methods when s is large enough. In this case, as before, NOCO and
UNIF are not reliable when s < 1e4. When s > 1e4, NOCO and UNIF perform
sufficiently closely to the conditioning-based methods on approximating the objective
value. However, the gap between the performance on approximating the solution
vector is significant.

In order to show more detail on the quartiles of the relative errors, we generated
a table similar to Table 2 which records the quartiles of relative errors on vectors,
measured in �1, �2, and �∞ norms by using the six methods when the sampling size
s = 5e4 and τ = 0.75. Table 3 shows similar quantities to and should be compared
with Table 2. Conditioning-based methods can yield two-digit accuracy when s = 5e4,
while NOCO and UNIF cannot. Also, the relative error is somewhat higher when
measured in the �∞ norm.

Next, we will explore how the accuracy may change as the lower dimension d varies
and explore the capacity of our large-scale version algorithm. In this experiment, we
fix the higher dimension of the replicated skewed data to be 1e9 and let d take values
in 10, 50, 100, 150. We will only use SPC2 as it has the relative best condition number.
Figure 12 shows the results of the experiment described above.

3Apache Hadoop, http://hadoop.apache.org/.

http://hadoop.apache.org/
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Fig. 11. The first (solid lines) and the third (dashed lines) quartiles of the relative errors of
the objective value (namely, |f − f∗|/|f∗|) and solution vector (namely, ‖x− x∗‖2/‖x∗‖2), by using
6 different methods, among 30 independent trials, as a function of the sample size s. The test
is on replicated skewed data with size 2.5e9 by 50. The two columns correspond to τ = 0.5, 0.75,
respectively.

Table 3

The first and the third quartiles of relative errors of the solution vector, measured in �1, �2, and
�∞ norms. The test is on replicated synthetic data with size 2.5e9 by 50, the sampling size s = 5e4,
and τ = 0.75.

‖x− x∗‖2/‖x∗‖2 ‖x− x∗‖1/‖x∗‖1 ‖x− x∗‖∞/‖x∗‖∞
SC [0.0084, 0.0109] [0.0075, 0.0086] [0.0112, 0.0159]

SPC1 [0.0071, 0.0086] [0.0066, 0.0079] [0.0080, 0.0105]

SPC2 [0.0054, 0.0063] [0.0053, 0.0061] [0.0050, 0.0064]

SPC3 [0.0055, 0.0062] [0.0054, 0.0064] [0.0050, 0.0067]

NOCO [0.0207, 0.0262] [0.0163, 0.0193] [0.0288, 0.0397]

UNIF [0.0206, 0.0293] [0.0175, 0.0200] [0.0242, 0.0474]

From Figure 12, except for some obvious facts such as the accuracies become
lower as d increases when the sampling size is unchanged, we should also notice that
the lower d is, the higher the minimum sampling size required to yield acceptable
relative errors will be. For example, when d = 150, we need to sample at least 1e4
rows in order to obtain at least one-digit accuracy.

Notice also that there are some missing points in the plot. That means we cannot
solve the subproblem at that sampling size with certain d. For example, solving a
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Fig. 12. The first (solid lines) and the third (dashed lines) quartiles of the relative errors of
the objective value (namely, |f − f∗|/|f∗|) and solution vector (namely, ‖x− x∗‖2/‖x∗‖2), by using
SPC2, among 30 independent trials, as a function of the sample size s. The test is on replicated
skewed data with n = 1e9 and d = 10, 50, 100, 150. The two columns correspond to τ = 0.5, 0.75,
respectively. The missing points mean that the subproblem on such sampling size with corresponding
d is unsolvable in RAM.

subproblem with size 1e6 by 100 is unrealistic on a single machine. Therefore, the
corresponding point is missing. Another difficulty we encounter is the capability of
conditioning on a single machine. Recall that in Algorithm 2, we need to perform
QR factorization or ellipsoid rounding on a matrix, say, SA, whose size is determined
by d. In our large-scale version of the algorithm, since these two procedures are not
parallelizable, we have to perform these locally. When d = 150, the higher dimension
of SA will be over 1e7. Such size has reached the limit of RAM for performing QR
factorization or ellipsoid rounding. Hence, it prevents us from increasing the lower
dimension d.

For the census data, we stack it vertically 2000 times to construct a realistic data
set whose size is roughly 1e10× 11. In Table 4, we present the solution computed by
our randomized algorithm with a sample size 1e5 at different quantiles, along with the
corresponding optimal solution. As can be seen, for most coefficients, our algorithm
provides at least two-digit accuracy. Moreover, in applications such as this, the quan-
tile regression result reveals some interesting facts about these data. For example, for
these data, marriage may entail a higher salary in lower quantiles; Education2, whose
value ranged from 0 to 256, has a strong impact on the total income, especially in the
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Table 4

Quantile regression results for the U.S. Census 2000 data. The response is the total annual
income. Except for the intercept and the terms involved with education, all the covariates are {0, 1}
binary indicators.
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higher quantiles; the difference in age doesn’t affect the total income much in lower
quantiles but becomes a significant factor in higher quantiles.

To summarize our large-scale evaluation, our main algorithm can handle terabyte-
sized quantile regression problems easily, obtaining, e.g., two digits of accuracy by
sampling about 1e5 rows on a problem of size 1e10 × 11. In addition, its running
time is competitive with the best existing random sampling algorithms, and it can be
applied in parallel and distributed environments. However, its capability is restricted
by the size of RAM since some steps of the algorithms need to be performed locally.
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6. Conclusion. We have proposed, analyzed, and evaluated new randomized
algorithms for solving medium-scale and large-scale quantile regression problems. Our
main algorithm uses a subsampling technique that involves constructing an �1-well-
conditioned basis, and our main algorithm runs in nearly input-sparsity time, plus
the time needed for solving a subsampled problem whose size depends only on the
lower dimension of the design matrix. The sampling probabilities used by our main
algorithm are derived by calculating the �1 norms of a well-conditioned basis, and
this conditioning step is an essential step of our method. For completeness, we have
provided a summary of recently proposed �1 conditioning methods, and based on this
we have introduced a new method (SPC3) in this article.

We have also provided a detailed empirical evaluation of our main algorithm.
This evaluation includes a comparison in terms of the quality of approximation of
several variants of our main algorithm that are obtained by applying several different
conditioning methods. The empirical results meet our expectation according to the
theory. Most of the conditioning methods, like our proposed method, SPC3, yield
two-digit accuracy by sampling only 0.1% of the data on our test problem. As for
running time, our algorithm is more scalable when compared to existing competing
algorithms, especially when the lower dimension gets up to several hundred, while the
large dimension is at least 1 million. In addition, we show that our algorithm works
well for terabyte-sized data in terms of accuracy and solvability.

Finally, we should emphasize that our main algorithm relies heavily on the notion
of �1 conditioning and that the overall performance of it can be improved if better �1
conditioning methods are derived.
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